adafruit_bno055 / utility / matrix.h @ 3f9d2401
History | View | Annotate | Download (5.075 KB)
| 1 |
/*
|
|---|---|
| 2 |
Inertial Measurement Unit Maths Library
|
| 3 |
Copyright (C) 2013-2014 Samuel Cowen
|
| 4 |
www.camelsoftware.com
|
| 5 |
|
| 6 |
This program is free software: you can redistribute it and/or modify
|
| 7 |
it under the terms of the GNU General Public License as published by
|
| 8 |
the Free Software Foundation, either version 3 of the License, or
|
| 9 |
(at your option) any later version.
|
| 10 |
|
| 11 |
This program is distributed in the hope that it will be useful,
|
| 12 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 14 |
GNU General Public License for more details.
|
| 15 |
|
| 16 |
You should have received a copy of the GNU General Public License
|
| 17 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 18 |
*/
|
| 19 |
|
| 20 |
#ifndef IMUMATH_MATRIX_HPP
|
| 21 |
#define IMUMATH_MATRIX_HPP
|
| 22 |
|
| 23 |
#include <stdlib.h> |
| 24 |
#include <string.h> |
| 25 |
#include <stdint.h> |
| 26 |
#include <math.h> |
| 27 |
|
| 28 |
namespace imu |
| 29 |
{
|
| 30 |
|
| 31 |
|
| 32 |
template <uint8_t N> class Matrix |
| 33 |
{
|
| 34 |
public:
|
| 35 |
Matrix() |
| 36 |
{
|
| 37 |
int r = sizeof(double)*N; |
| 38 |
_cell = (double*)malloc(r*r);
|
| 39 |
memset(_cell, 0, r*r);
|
| 40 |
} |
| 41 |
|
| 42 |
Matrix(const Matrix &v)
|
| 43 |
{
|
| 44 |
int r = sizeof(double)*N; |
| 45 |
_cell = (double*)malloc(r*r);
|
| 46 |
memset(_cell, 0, r*r);
|
| 47 |
for (int x = 0; x < N; x++ ) |
| 48 |
{
|
| 49 |
for(int y = 0; y < N; y++) |
| 50 |
{
|
| 51 |
_cell[x*N+y] = v._cell[x*N+y]; |
| 52 |
} |
| 53 |
} |
| 54 |
} |
| 55 |
|
| 56 |
~Matrix() |
| 57 |
{
|
| 58 |
free(_cell); |
| 59 |
} |
| 60 |
|
| 61 |
void operator = (Matrix m)
|
| 62 |
{
|
| 63 |
for(int x = 0; x < N; x++) |
| 64 |
{
|
| 65 |
for(int y = 0; y < N; y++) |
| 66 |
{
|
| 67 |
cell(x, y) = m.cell(x, y); |
| 68 |
} |
| 69 |
} |
| 70 |
} |
| 71 |
|
| 72 |
Vector<N> row_to_vector(int y)
|
| 73 |
{
|
| 74 |
Vector<N> ret; |
| 75 |
for(int i = 0; i < N; i++) |
| 76 |
{
|
| 77 |
ret[i] = _cell[y*N+i]; |
| 78 |
} |
| 79 |
return ret;
|
| 80 |
} |
| 81 |
|
| 82 |
Vector<N> col_to_vector(int x)
|
| 83 |
{
|
| 84 |
Vector<N> ret; |
| 85 |
for(int i = 0; i < N; i++) |
| 86 |
{
|
| 87 |
ret[i] = _cell[i*N+x]; |
| 88 |
} |
| 89 |
return ret;
|
| 90 |
} |
| 91 |
|
| 92 |
void vector_to_row(Vector<N> v, int row) |
| 93 |
{
|
| 94 |
for(int i = 0; i < N; i++) |
| 95 |
{
|
| 96 |
cell(row, i) = v(i); |
| 97 |
} |
| 98 |
} |
| 99 |
|
| 100 |
void vector_to_col(Vector<N> v, int col) |
| 101 |
{
|
| 102 |
for(int i = 0; i < N; i++) |
| 103 |
{
|
| 104 |
cell(i, col) = v(i); |
| 105 |
} |
| 106 |
} |
| 107 |
|
| 108 |
double& operator ()(int x, int y) |
| 109 |
{
|
| 110 |
return _cell[x*N+y];
|
| 111 |
} |
| 112 |
|
| 113 |
double& cell(int x, int y) |
| 114 |
{
|
| 115 |
return _cell[x*N+y];
|
| 116 |
} |
| 117 |
|
| 118 |
|
| 119 |
Matrix operator + (Matrix m) |
| 120 |
{
|
| 121 |
Matrix ret; |
| 122 |
for(int x = 0; x < N; x++) |
| 123 |
{
|
| 124 |
for(int y = 0; y < N; y++) |
| 125 |
{
|
| 126 |
ret._cell[x*N+y] = _cell[x*N+y] + m._cell[x*N+y]; |
| 127 |
} |
| 128 |
} |
| 129 |
return ret;
|
| 130 |
} |
| 131 |
|
| 132 |
Matrix operator - (Matrix m) |
| 133 |
{
|
| 134 |
Matrix ret; |
| 135 |
for(int x = 0; x < N; x++) |
| 136 |
{
|
| 137 |
for(int y = 0; y < N; y++) |
| 138 |
{
|
| 139 |
ret._cell[x*N+y] = _cell[x*N+y] - m._cell[x*N+y]; |
| 140 |
} |
| 141 |
} |
| 142 |
return ret;
|
| 143 |
} |
| 144 |
|
| 145 |
Matrix operator * (double scalar)
|
| 146 |
{
|
| 147 |
Matrix ret; |
| 148 |
for(int x = 0; x < N; x++) |
| 149 |
{
|
| 150 |
for(int y = 0; y < N; y++) |
| 151 |
{
|
| 152 |
ret._cell[x*N+y] = _cell[x*N+y] * scalar; |
| 153 |
} |
| 154 |
} |
| 155 |
return ret;
|
| 156 |
} |
| 157 |
|
| 158 |
Matrix operator * (Matrix m) |
| 159 |
{
|
| 160 |
Matrix ret; |
| 161 |
for(int x = 0; x < N; x++) |
| 162 |
{
|
| 163 |
for(int y = 0; y < N; y++) |
| 164 |
{
|
| 165 |
Vector<N> row = row_to_vector(x); |
| 166 |
Vector<N> col = m.col_to_vector(y); |
| 167 |
ret.cell(x, y) = row.dot(col); |
| 168 |
} |
| 169 |
} |
| 170 |
return ret;
|
| 171 |
} |
| 172 |
|
| 173 |
Matrix transpose() |
| 174 |
{
|
| 175 |
Matrix ret; |
| 176 |
for(int x = 0; x < N; x++) |
| 177 |
{
|
| 178 |
for(int y = 0; y < N; y++) |
| 179 |
{
|
| 180 |
ret.cell(y, x) = cell(x, y); |
| 181 |
} |
| 182 |
} |
| 183 |
return ret;
|
| 184 |
} |
| 185 |
|
| 186 |
Matrix<N-1> minor_matrix(int row, int col) |
| 187 |
{
|
| 188 |
int colCount = 0, rowCount = 0; |
| 189 |
Matrix<N-1> ret;
|
| 190 |
for(int i = 0; i < N; i++ ) |
| 191 |
{
|
| 192 |
if( i != row )
|
| 193 |
{
|
| 194 |
for(int j = 0; j < N; j++ ) |
| 195 |
{
|
| 196 |
if( j != col )
|
| 197 |
{
|
| 198 |
ret(rowCount, colCount) = cell(i, j); |
| 199 |
colCount++; |
| 200 |
} |
| 201 |
} |
| 202 |
rowCount++; |
| 203 |
} |
| 204 |
} |
| 205 |
return ret;
|
| 206 |
} |
| 207 |
|
| 208 |
double determinant()
|
| 209 |
{
|
| 210 |
if(N == 1) |
| 211 |
return cell(0, 0); |
| 212 |
|
| 213 |
float det = 0.0; |
| 214 |
for(int i = 0; i < N; i++ ) |
| 215 |
{
|
| 216 |
Matrix<N-1> minor = minor_matrix(0, i); |
| 217 |
det += (i%2==1?-1.0:1.0) * cell(0, i) * minor.determinant(); |
| 218 |
} |
| 219 |
return det;
|
| 220 |
} |
| 221 |
|
| 222 |
Matrix invert() |
| 223 |
{
|
| 224 |
Matrix ret; |
| 225 |
float det = determinant();
|
| 226 |
|
| 227 |
for(int x = 0; x < N; x++) |
| 228 |
{
|
| 229 |
for(int y = 0; y < N; y++) |
| 230 |
{
|
| 231 |
Matrix<N-1> minor = minor_matrix(y, x);
|
| 232 |
ret(x, y) = det*minor.determinant(); |
| 233 |
if( (x+y)%2 == 1) |
| 234 |
ret(x, y) = -ret(x, y); |
| 235 |
} |
| 236 |
} |
| 237 |
return ret;
|
| 238 |
} |
| 239 |
|
| 240 |
private:
|
| 241 |
double* _cell;
|
| 242 |
}; |
| 243 |
|
| 244 |
|
| 245 |
}; |
| 246 |
|
| 247 |
#endif
|
| 248 |
|